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a b s t r a c t

Computer experiments are widely used in modern science and industrial applications
that require space-filling designs. Uniform projection designs (UPDs) have recently been
proposed to address designs’ space-filling properties for low-dimensional projections.
UPDs are desirable for experiments in which only portions of factors are active. The
construction of UPDs with flexible sizes is challenging, especially for large ones. In this
paper, we systematically study the construction methods of UPDs via level permutation
and/or level expansion. For each approach, we establish theoretical results connecting
the uniform projection properties of the generated designs with the properties of
the corresponding initial designs. Based on the established theoretical results, efficient
algorithms are developed to construct UPDs with flexible sizes, which leads to many
practically useful designs.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Computer experiments are widely used to emulate complex physical systems (Santner et al., 2003; Fang et al., 2006;
arud et al., 2017; Gramacy, 2020; Lukemire et al., 2021). Space-filling designs whose points are allocated evenly in the
xperimental regions are recommended for computer experiments (Fang et al., 2006; Gramacy, 2020). Space-filling Latin
ypercube designs (LHDs) and fractional factorial designs (FFDs) are popular (Joseph, 2016; Lin and Tang, 2015; Xiao and
u, 2018; Xiao et al., 2019). An LHD is an n× k matrix whose columns are permutations of numbers 1 to n (McKay et al.,

1979). LHDs have unique point projections, thus having no replication, on each dimension.
In the current literature, the maximin distance criterion (Johnson et al., 1990) and the discrepancy criteria (Hickernell,

1998) are two popular space-filling measures. The former seeks to maximize the minimum inter-site distances among
the design points (Lin and Tang, 2015; Sun and Tang, 2017a,b; Wang et al., 2018; Xiao and Xu, 2017, 2018; Li et al.,
2020). The latter aims to minimize some discrepancy criteria, including the centered L2-discrepancy (CD), the wrap-
round L2-discrepancy (WD) and the mixture discrepancy (MD) (Zhou et al., 2013). Optimal designs under either criterion
ocus on the space-filling properties over the entire design spaces, but they may have poor projection uniformity in low
imensions (Joseph et al., 2015).
In many computer experiments, only a few out of the numerous factors are active (Kleijnen, 2017; Moon et al., 2012;
oods and Lewis, 2016). Thus, an appropriate design should be space-filling not only in the full-dimensional space but
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also over all low-dimensional projections. Under this consideration, Joseph et al. (2015) proposed the maximum projection
(Maxpro) design, and Sun et al. (2019) proposed the uniform projection design (UPD), where the former considers a
distance metric and the latter relies on a discrepancy measure. Maxpro designs assume that all sub-spaces are equally
important, while UPDs focus more on lower-dimensional projections. UPDs have the smallest average CD values of all
two-dimensional projections and are shown to have good space-filling properties over all sub-spaces in terms of the
distance, uniformity and orthogonality (Sun et al., 2019; Wang et al., 2020).

To find an n-run, k-factor and s-level UPD, the entire search space includes as many as (n!/((n/s)!)s)k candidate designs
including isomorphism). Clearly, for UPDs of large sizes, a direct search over the entire space can be inefficient. In the
urrent literature, the procedures of level permutation and level expansion are widely used to restrict the search space
or identifying optimal designs (Tang, 1993; Leary et al., 2003; Tang et al., 2012; Zhou and Xu, 2014; Jiang and Ai, 2017;
iao and Xu, 2018). A key problem in such methods is to identify appropriate initial designs which will determine the
roperties of sub-spaces for searching.
In this paper, we propose to construct UPDs via level permutation (LP), level expansion (LE), both level permutation

nd expansion (BLPE), and step-by-step level permutation and expansion (SLPE) according to the required design sizes.
heoretical results are established to identify the ‘‘average-best’’ sub-spaces for searching. Specifically, for all these four
onstruction methods, we connect the average uniform projection properties of the generated designs with the uniform
rojection properties, distance structures and generalized word-length patterns of their corresponding initial designs.
nitial designs with small A2 values and small φ values should be used justified by both theoretical and empirical results.
tailored threshold accepting global optimization algorithm is developed for searching UPDs. Guidelines on when to

pply these four constructions are discussed in detail. For moderate or large UPDs, SLPE is generally recommended as
llustrated in Section 4.

The rest of this paper is organized as follows. Section 2 introduces the notation and preliminaries. Section 3 shows
he theoretical results for the proposed constructions. Section 4 discusses the construction guidelines and show some
umerical studies. Section 5 concludes and discusses some future work. All proofs and technical details are given
n Appendix A.

. Notation and preliminaries

Denote an n-run, k-factor and s-level (labeled as 1, 2, . . . , s) design as (n, sk). A design is an orthogonal array (OA) of
trength t , denoted as OA(n, k, s, t), if all possible level combinations appear the same number of times in its every n × t
ub-matrix (Hedayat et al., 1999). In practice, researchers often focus on OAs of strength t = 2. A design is balanced
f every level appears the same number of times in its every column. Specifically, a Latin hypercube design, denoted as
HD(n, k), is a balanced (n, nk) design. Throughout this paper, we focus on balanced designs.
To evaluate designs’ aliasing structures, Xu and Wu (2001) introduced the generalized word length pattern (GWLP).

or a design D(n, sk), consider the full ANOVA model Y = X0α0 + X1α1 + · · · + Xnαn + ϵ, where Y is the response vector,
0 is the intercept, X0 is an n×1 vector of all 1’s, αj is an (s−1)j

(k
j

)
×1 vector including all jth-order factorial effects, Xj is

an n× (s−1)j
(k
j

)
matrix consisting of jth factor contrast coefficients (j = 1, . . . , k), and ϵ ∼ N(0, σ 2) is a random error. Xu

and Wu (2001) defined Aj(D) = n−2
|XT

0 Xj|
2 to measure the overall aliasing between the intercept and all jth-order factorial

effects, where |X |
2

= tr(XTX) and j = 0, . . . , k. It is straightforward to show that all balanced designs D satisfy A0(D) = 1.
The GWLP of design D is the vector (A1(D), . . ., Ak(D)). Xu and Wu (2001) proposed to sequentially minimize designs’
GWLPs. A design D is an OA of strength t if and only if A1(D) = · · · = At (D) = 0.

For an (n, sk) design D = (xil)n×k, let xi = (xi1, . . . , xik) and xj =
(
xj1, . . . , xjk

)
be its ith and jth rows, respectively. Denote

the Hamming distance between rows xi and xj as hi,j, which is the number of positions at which the two rows are different.

Let dp
(
xi, xj

)
=

(∑k
l=1

⏐⏐xil − xjl
⏐⏐p)1/p be the Lp-distance between two rows xi and xj. Let dp(D) = min{dp(xi, xj), 1 ≤ i < j ≤

n} be the Lp-distance of design D. The maximin Lp-distance design maximizes the value of dp(D) among all designs of the
same size. In this paper, we focus on the L1-distance measure (a.k.a., Manhattan distance); that is, we use di,j =

∑k
l=1 dil,jl

where dil,jl =
⏐⏐xil − xjl

⏐⏐.
The centered L2-discrepancy (CD) proposed by Hickernell (1998) is a widely used criterion for measuring designs’

space-filling properties. It has a clear geometric interpretation that the number of points in any chosen rectangular space
should be proportional to the volume of the chosen space if the design points are space-filling in the whole space or
sub-spaces. Based on the CD metric, Sun et al. (2019) proposed the uniform projection criterion which is defined as

φ(D) =
2

k(k − 1)

∑
|u|=2

CD(Du),

where u is a subset of {1, 2, . . . , k}, |u| is the cardinality of u, and Du is the projection of D onto the dimensions indexed
y the elements in u. A uniform projection design (UPD) minimizes the value of φ(D) among all possible designs of the
ame size. Sun et al. (2019) showed that

φ(D) =
g(D)

+ C(k, s), (1)

4k(k − 1)n2s2
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where g(D) =
∑n

i=1
∑n

j=1 d
2
i,j − 2

∑n
i=1(

∑n
j=1 di,j)

2/n, and the constant C(k, s) = (4(5k − 2)s4 + 30(3k − 5)s2 + 15k +

33)/(720(k−1)s4)+(1+(−1)s)/(64s4). Eq. (1) provides a fast way to compute the φ(D) values via calculating the pairwise
L1-distances in D.

Sun et al. (2019) gave a lower bound of φ(D), and Wang et al. (2020) gave an improved lower bound and a new upper
bound. We summarize their findings in the following lemma.

Lemma 1. For any balanced (n, sk) design D, we have max{φLB1, φLB2} ⩽ φ(D) ⩽ φUB, where

φLB1 =
5k(4s4 + 2(13n − 17)s2 − n + 5) − (n − 1)(8s4 + 150s2 − 33)

720(n − 1)(k − 1)s4
+

1 + (−1)s

64s4
,

φLB2 =
26s2 − 1
144s4

+
1 + (−1)s

64s4
,

φUB =
(10k − 8)s4 + (140k − 150)s2 − 25k + 33

720(k − 1)s4
+

1 + (−1)s

64s4
.

he lower bound φLB1 is achieved if and only if D is an L1-equidistant design. The lower bound φLB2 is achieved if and only if D
s an OA.

Wang et al. (2020) defined the relative φ-efficiency of a design D as

φRE(D) =
φUB − φ(D)
φUB − φLB

, (2)

where φLB = max{φLB1, φLB2} and φUB are given in Lemma 1. Clearly, we have 0 ⩽ φRE(D) ⩽ 1, and larger φRE(D) values
ndicate better projection uniformity of designs.

Next, we define the procedures of level permutation (LP) and level expansion (LE). Starting from an (n, sk) initial
esign D, we can randomly permute the s levels in its one or more factors to generate a new design D′ of the same
ize, which is called the LP procedure. From any initial design D, we have (s!)k possible D′’s generated via LP. In addition,
tarting from a low-level initial design D(n, sk), we can generate high-level designs D′(n, (ms)k) via LE; that is, for each
column in D, we replace the n/s entries of level l (l = 1, 2, . . . , s) with n/(ms) replicates of random permutations of
{(l − 1)m + 1, (l − 1)m + 2, . . . , (l − 1)m + m}, where n, k, s and m are all integers larger than 1 and n is divisible by ms.
pecifically, the D′’s are LHDs if m = n/s. From any initial design D, we have ((n/s)!/(r!)m)sk possible D′’s generated via

LE, where r = n/(ms).
In the procedure of both level permutation and expansion (BLPE), we first perform LP to an initial design D(n, sk),

and then for each generated design via LP we perform LE to obtain the generated designs D′
(
n, (ms)k

)
. Clearly, from any

initial design D, there are in total (s!)k ((n/s)!/(r!)m)sk possible D′’s via BLPE. Note that this number is much smaller than
the total number of possible designs with n runs, k factors and ms levels which is (n!/((n/ms)!)ms)k. Obviously, the LP, LE
nd BLPE procedures restrict the whole search space to some much smaller sub-spaces. The initial designs D determine
hich sub-spaces to search over, and we want to choose the best D that will lead to the ‘‘average-best’’ performances of
ll the generated designs.

xample 1. To illustrate the LP procedure, we consider replacing the levels (1, 2, 3, 4) in both columns of an initial
design D0(8, 42) with a random permutation (1, 3, 2, 4) to generate a new design D, where

D0 =

(
1 1 3 3 2 2 4 4
1 2 3 4 1 2 3 4

)T

, D =

(
1 1 2 2 3 3 4 4
1 3 2 4 1 3 2 4

)T

.

Design D0 has a uniform projection value of φ(D0) = 0.02 and a relative φ-efficiency of φRE(D0) = 47%, while design D
has φ(D) = 0.01 and φRE(D) = 94%. Clearly, we can improve the design’s projection uniformity by choosing the best out
of the 576 possible generated designs D via LP.

To illustrate the LE procedure, we consider generating an LHD D′ from the above D after LP. For each column in D, we
replace all entries of 1 (2, 3 or 4) with a random permutation of numbers: (1, 2) ((3, 4), (5, 6) or (7, 8)). Here are two
possible generated LHDs:

D′

2 =

(
1 2 3 4 5 6 7 8
1 5 3 7 2 6 4 8

)T

, D′

3 =

(
2 1 3 4 5 6 8 7
2 6 4 8 1 5 3 7

)T

.

We have φ(D′

2) = 0.007 (φRE(D′

2) = 77%) and φ(D′

3) = 0.004 (φRE(D′

3) = 90%). Clearly, we can improve the design’s
projection uniformity by choosing the best out of the 256 possible generated designs D′ via LE.

In addition, to illustrate the impacts of the initial designs on the generated designs in LP or LE, we compare pairs of
initial designs having the same design sizes but different φ values. In Table 1, we list the minimum and average φ values
(defined in (1)) and the corresponding φ-efficiency φRE (defined in (2)) of the generated designs searched in the same
time, where we separate the results from the pair of initial designs using a slash. We can observe that initial designs with
smaller φ values tend to generated designs with smaller φ values.
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Table 1
The φ-values (multiplied by 104) and φ-efficiencies (%) of designs generated from pairs of initial designs via either LP or LE.

(n, sk) φ(D) φ(D′)(φRE )

φmin(φRE_min) φ̄(φRE_ave)

LP (27, 35) 199.76/308.13 199.76(100)/304.01(32.45) 199.76(100)/304.13(32.37)
(50, 55) 72.11/131.63 72.11(100)/121.71(66.84) 72.11(100)/124.12(65.23)

LE (27, 275) 199.76/308.13 5.02(98.26)/56.43(63.04) 5.78(97.73)/56.97(62.67)
(50, 505) 72.11/131.63 1.59(99.41)/39.77(73.23) 1.87(99.21)/39.92(73.13)

Table 2
The φ-values (multiplied by 104) of designs generated from five 210−3 initial designs via LP.
(A1, A2, A3, A4) φ(D) φ(D′)

Min Ave True.Ave

(0,0,0,3) 466.58 466.58 466.58 466.58
(0,0,1,2) 466.58 466.58 466.58 466.58
(0,1,0,2) 470.05 470.05 470.05 470.05
(0,2,0,1) 473.52 473.52 473.52 473.52
(0,3,0,3) 477.00 477.00 477.00 477.00

In next section, we will give theoretical results on how to choose initial designs to improve the overall searching
efficiency.

3. Theoretical results

In this section, we systematically study the theoretical properties for constructing UPDs under three scenarios: level
permutation (LP), level expansion (LE) and both level permutation and expansion (BLPE). Numerical examples are given
to illustrate the theoretical results.

3.1. Designs generated via LP

For an (n, sk) initial design D, let P(D) be the collection of all designs D′ generated by permuting the levels of D. Let
φP

(
D′
)
be the average φ values of all designs in P(D).

heorem 1. For any balanced (n, sk) design D, when all possible level permutations of D are considered, we have

φP
(
D′
)

=
1
nP

∑
D′∈P(D)

φ(D′) =
(s + 1)2

18k(k − 1)s4
A2(D) + φLB2,

here the constant nP = (s!)k and φLB2 is defined in Lemma 1.

Theorem 1 shows that the average φ values of all designs in P(D) are a linear function of the initial design D’s A2 (in
WLP) value. Thus, initial designs with small A2 values (e.g., OAs) are preferred in LP, which will lead to the average-best
smallest average φ values) sub-spaces for searching. As LP will not change the φ value of any two-level design, we can
rove the following corollary.

orollary 1. For a balanced (n, 2k) design D, φ(D) =
1

32k(k−1)A2(D) +
215
4608 .

By Corollary 1, it is seen that minimizing φ(D) is equivalent to minimizing its A2 value for two-level designs.

Example 2. Consider five 210−3 and five 37−2 fractional factorial designs with different GWLPs, from which we enumerate
all possible 1024 and 279936 generated designs D′ via LP respectively. We show their minimum (‘‘Min’’ column) and
average (‘‘Ave’’ column) φ values in Tables 2 and 3, respectively. Additionally, we show the true average (‘‘True.Ave’’
column) φ values of all possible generated designs in P(D) by Theorem 1. We use bold font to show the best results
throughout the paper.

From Table 2, it is seen that an OA(n, 2k) (A2 = 0) is a UPD with φ(D) = 215/4068, which illustrates Corollary 1.
From Tables 2 and 3, it is not difficult to find that the average φ values calculated based on Theorem 1 is equal to
the average φ values for all generated designs enumerated, which verifies Theorem 1. We can see that the φ values
of generated designs are different when using different initial designs which have different GWLPs. Specifically, an initial
design having a smaller A2 value will lead to a better search space of generated designs in terms of the average uniform
projection properties, which illustrates Theorem 1. Note that initial designs D with A2 = 0 will have the same φ(D) value
which achieves a lower bound as described by Lemma 1.
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Table 3
The φ-values (multiplied by 104) of designs generated from five 37−2 initial designs via LP.
(A1, A2, A3, A4) φ(D) φ(D′)

Min Ave True.Ave

(0,0,2,6) 199.76 199.76 199.76 199.76
(0,0,4,2) 199.76 199.76 199.76 199.76
(0,0,8,0) 199.76 199.76 199.76 199.76
(0,2,0,4) 206.29 204.33 204.99 204.99
(0,4,0,4) 212.82 208.90 210.21 210.21

3.2. Designs generated via LE

Starting from a low-level design D(n, sk), let E(D) be the collection of all high-level generated designs D′(n, (ms)k) via
E, where n, k, s and m are all integers larger than 1 and n is divisible by ms. Let φE

(
D′
)
be the average φ values of all

designs in E(D).

Theorem 2. For a balanced (n, sk) design D, when all possible level expansions of D are considered, we have

φE
(
D′
)

=
1
nE

∑
D′∈E(D)

φ(D′) = φ(D) −
m2

− 1
6k(k − 1)m2s2n(n − s)

n∑
i=1

n∑
j=1

hi,jdi,j +
n2
(
m2

− 1
)2

18k(k − 1)m4s4(n − s)2
A2(D) + C1, (3)

here the constant nE = ((n/s)!/(r!)m)sk, r = n/(ms), m = n/s and

C1 =

(
m2

− 1
) [

−(4kn − 3)s3 + 2(2kn − 3)ns2 + (2k + 3n + 2)ns − 4kn2
]

72(k − 1)m2s3(n − s)2

+
n
(
m2

− 1
) (

s2 + n
(
m2

− 1
))

36m4s4(n − s)2
−

1 + (−1)s

64s4
−

(
m2

− 1
) (

2m2s2 − m2
− 1

)
288m4s4

−

(
m2

− 1
) (

2(11k − 9)m2s2 − 3(k − 1)m2
− 3k + 3

)
96(k − 1)m4s4

+
1 + (−1)ms

64m4s4
.

Theorem 2 connects the generated designs’ average uniform projection properties with the initial design’s uniform
projection property, distance structure and A2 value (in GWLP). Next, we identify the dominant term of φE

(
D′
)
.

Lemma 2. For a balanced design D(n, sk), the φ criterion defined in (1) is equivalent to

φ(D) =
1

4k(k − 1)n2s2

n∑
i=1

n∑
j=1

d2i,j −
1

k(k − 1)ns4

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

+ C2, (4)

where C2 = C(k, s) −
(
s2 − 1

) (
(25k + 3)s2 − 25k − 7

)
/480(k − 1)s4 is a constant with C(k, s) defined in (1) and s0 =

(s + 1) /2.

Remark 1. The first term of φ(D) in (4) is always greater than the absolute value of its second term; that is,

1
4k(k − 1)n2s2

n∑
i=1

n∑
j=1

d2i,j >
1

k(k − 1)ns4

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

.

By Lemma 2 and Remark 1, it is seen that the φ value of a design D is dominated by
∑n

i=1
∑n

j=1 d
2
i,j/
[
4k(k − 1)n2s2

]
.

hus, we have the following Remark 2 which reveals the dominated term in Theorem 2.

emark 2. Denote the dominated term of φ(D) as T1 =
1

4k(k−1)n2s2
∑n

i=1
∑n

j=1 d
2
i,j. Denote the absolute values of the

second and the third terms in (3) as T2 =
m2

−1
6k(k−1)m2s2n(n−s)

∑n
i=1
∑n

j=1 hi,jdi,j and T3 =
n2(m2

−1)2

18k(k−1)m4s4(n−s)2
A2(D), respectively.

n Theorem 2, we have:

(1) T1 is not less than T2, where T1/T2 ⩾ 1 +
(s−2)(s−1)
2k(s+1) ;

(2) T is not less than T , when A (D) ⩽ 4k.
2 3 2
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Table 4
Comparisons between the absolute values of the first two terms in Lemma 2 and the second term in Theorem 2.
s Initial design m T1 T2 T4 T1/T2 T1/(T2 + T4)

2

(4, 23) 2 0.03125 0.03125

0.00195

1.00 0.94
(8, 25) 4 0.02344 0.01953 1.20 1.09
(128, 210)1 64 0.01944 0.01317 1.48 1.29
(128, 210)2 0.01979 0.01340 1.48 1.29

3

(9, 34) 3 0.03429 0.02195
0.00274

1.56 1.39

(27, 313) 3 0.02503 0.01235 2.03 1.66
9 0.01372 1.83 1.52

(243, 37)1 81 0.02884 0.01415 0.00281 2.04 1.70
(243, 37)2 0.02956 0.01442 0.00287 2.05 1.71

5 (25, 56) 5 0.03360 0.01280 0.00320 2.63 2.10

7 (49, 78) 7 0.05702 0.01737 0.00333 3.28 2.66

9 (81, 910) 3 0.03167 0.00610 0.00339 5.19 3.34
9 0.00677 4.68 3.12

Note: (128, 210)1 refers to the 210−3 design with (A1, A2, A3, A4) = (0, 1, 0, 2); (128, 210)2 refers to the 210−3 design with
(0, 2, 0, 1); (243, 37)1 refers to the 37−2 design with (0, 2, 0, 4); (243, 37)2 refers to the 37−2 design with (0, 4, 0, 4);
and other designs are OAs with t = 2.

Table 5
Comparisons between the absolute values of the second and third terms in Theorem 2.
(A1, A2, A3, A4) s m 4k T2 T3 T2/T3
(0,1,0,2)

2 64 40
0.01317 0.00004 330.83

(0,2,0,1) 0.01340 0.00008 168.37
(0,3,0,3) 0.01364 0.00012 114.22

(0,2,0,4) 3 81 28 0.01415 0.00002 422.78
(0,4,0,4) 0.01442 0.00007 215.34

By Remark 2, the average uniform projection property of all generated designs φE
(
D′
)
in Theorem 2 is dominated

by the initial design’s uniform projection property φ(D). Note that the difference between the terms T1 and T2 increases
quickly as s increases; see the numerical results in Table 4 for illustration. Intuitively, this is mainly because the difference
between hi,j and di,j becomes larger for higher levels. For clarity, denote the absolute value of the second term in (4) as

T4 =

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

/k(k − 1)ns4.

In Table 4, it is seen that the difference between the terms T1 and T4 also increases quickly as s increases. In addition,
since A2(D) ⩽ 4k clearly holds in most practical cases, T2 is not less than T3 by Remark 2; see Table 5 for an illustration.
In Table 5, the ratio T2/T3 increases quickly as s increases, which can be justified theoretically; see the proof of Remark 2.
Overall speaking, we should choose a UPD as the initial design in the LE procedure which will lead to a better search
space. By Lemma 1, OAs reach the lower bound φLB2 for φ values and satisfy A2 = 0. As T3 ⩾ 0, if the corresponding OAs
are available, we should choose them as the initial designs.

Since the L1-distance is equivalent to the Hamming distance in two-level designs, we can prove the following
Corollary 2. It suggests that when starting from two-level initial designs, we should choose initial designs with small
A2 values in LE.

Corollary 2. For any balanced (n, 2k) design D, when all possible level expansions are considered, we have

(1) φE
(
D′
)

=
((2m2

+1)n−6m2)2

288k(k−1)m4(n−2)2
A2(D) + C3, where C3 is a constant;

(2) specifically, when D′ is an LHD(n, k) (m = n/s), φE
(
D′
)

=
(n−1)2

72k(k−1)n2
A2(D) + C4, where C4 is a constant.

Example 3. Consider the same 210−3 and 37−2 designs in Example 2, from which we randomly generate 105 LHDs via LE.
We show their minimum (‘‘Min’’ column) and sample average (‘‘Sam.Ave’’ column) φ values in Tables 6 and 7, respectively.
We also give the true average (‘‘True.Ave’’ column) φ values of all possible generated designs in E(D) by Theorem 2.

From Tables 6 and 7, it is seen that the minimum and average φ values of the generated designs depend on the
roperties of the initial designs. Specifically, initial designs with smaller φ values will lead to better generated designs
ith smaller average (and minimum) φ values via LE, which illustrates Theorem 2. As a special case, two-level designs with
maller A2 values will have smaller φ values, which illustrates Corollary 2. In addition, it is seen that the sample average
s close to the true average in this example. Note that the true average φ values of all generated designs are calculated
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Table 6
The φ-values (multiplied by 104) of designs generated from five 210−3 initial designs via LE.
(A1, A2, A3, A4) φ(D) φ(D′)

Min Sam.Ave True.Ave

(0,0,0,3) 466.58 1.40 1.76 1.76
(0,0,1,2) 466.58 1.41 1.76 1.76
(0,1,0,2) 470.05 2.82 3.28 3.28
(0,2,0,1) 473.52 4.24 4.80 4.80
(0,3,0,3) 477.00 5.67 6.32 6.32

Table 7
The φ-values (multiplied by 104) of designs generated from five 37−2 initial designs via LE.
(A1, A2, A3, A4) φ(D) φ(D′)

Min Sam.Ave True.Ave

(0,0,2,6) 199.76 0.53 0.67 0.67
(0,0,4,2) 199.76 0.51 0.67 0.67
(0,0,8,0) 199.76 0.47 0.67 0.67
(0,2,0,4) 206.29 4.58 4.89 4.89
(0,4,0,4) 212.82 8.70 9.12 9.12

by Theorem 2, and since it would be impossible to enumerate the nE candidate designs for each case in Tables 6 and 7,
e take 105 samples as an explanation.

.3. Designs generated via BLPE

From an initial low-level design D(n, sk), we can perform both level permutation and expansion (BLPE) to generate
igh-level designs D′(n, (ms)k). Let Θ(D) represent the set of all designs generated via BLPE. Let φΘ

(
D′
)
be the average φ

alue of all designs in Θ(D).

heorem 3. From a balanced (n, sk) initial design D, when all possible level permutations and expansions of D are considered,
e have

φΘ

(
D′
)

=
1
nΘ

∑
D′∈Θ(D)

φ(D′) =

(
m2s2 − (n − 1)m2s − n

)2
18k(k − 1)m4s4(n − s)2

A2(D) + C5,

here the constant nΘ = (s!)k ((n/s)!/(r!)m)sk, r = n/(ms), m = n/s,

C5 = C1 + C(k, s) −

(
s2 − 1

) (
(25k + 3)s2 − 25k − 7

)
480(k − 1)s4

−

(
s2 − 1

)2
288s4

−
(s2 − 1)

[
(2k + 1)m2s3 − (2k + 1)nm2s2 − 4kns − 2(k − 1)n(m2

− 2) + 2(2kn − k + 1)m2s
]

72(k − 1)m2s4(n − s)
,

C1 and C(k, s) are defined in (3) and (1), respectively.

By Theorem 3, it is clear that from an initial design D with a smaller A2 value, the designs generated via BLPE will
have better average uniform projection property. Clearly, φΘ

(
D′
)
reaches the minimum when the initial design is an OA

(A2(D) = 0), which will lead to the best search space Θ(D).

Example 4. Consider the same 210−3 and 37−2 designs in Example 2, from which we randomly generate 105 LHDs via
BLPE. We show their minimum and sample average φ values in Tables 8 and 9, respectively. We also give the true average
φ values of all generated designs in Θ(D) by Theorem 3.

From Tables 8 and 9, it is clear that the minimum and average φ values of the generated designs depend on the
properties of the initial designs. Specifically, the initial designs with smaller A2 values will lead to better generated designs
(i.e., smaller φ values) on average via BLPE, which illustrates Theorem 3.

3.4. Choices of OAs as initial designs

Based on the theoretical results in previous subsections, OAs (A2 = 0) are good choices for initial designs if they are
available. When LE is applied, various OAs may be available. For example, to generate a 16-run, 2-factor LHD, there are
various 2-level and 4-level OAs that can be selected as initial designs in LE. In this subsection, we further detail the choices
of OAs.
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Table 8
The φ-values (multiplied by 104) of designs generated from five 210−3 initial designs via BLPE.
(A1, A2, A3, A4) φ(D) φ(D′)

Min Sam.Ave True.Ave

(0,0,0,3) 466.58 1.43 1.76 1.76
(0,0,1,2) 466.58 1.39 1.76 1.76
(0,1,0,2) 470.05 2.85 3.28 3.28
(0,2,0,1) 473.52 4.27 4.80 4.80
(0,3,0,3) 477.00 5.70 6.32 6.32

Table 9
The φ-values (multiplied by 104) of designs generated from five 37−2 initial designs via BLPE.
(A1, A2, A3, A4) φ(D) φ(D′)

Min Sam.Ave True.Ave

(0,0,2,6) 199.76 0.53 0.67 0.67
(0,0,4,2) 199.76 0.51 0.67 0.67
(0,0,8,0) 199.76 0.50 0.67 0.67
(0,2,0,4) 206.29 2.77 3.59 3.59
(0,4,0,4) 212.82 5.01 6.50 6.50

Table 10
The average φ-values (multiplied by 104) and φ-efficiencies (%) of LHDs generated from OAs with different levels.
n k Lower levels Higher levels

D1 φ(D′

1) φRE D2 φ(D′

2) φRE

16 5 OA(16,5,2,2) 21.34 90.23 OA(16,5,4,2) 16.28 93.70
32 5 OA(32,5,2,2) 8.61 95.31 OA(32,5,4,2) 5.98 97.11
64 6 OA(64,6,2,3) 3.78 97.69 OA(64,6,4,3) 2.44 98.61
81 6 OA(81,6,3,2) 2.24 98.64 OA(81,6,9,2) 1.07 99.45
256 6 OA(256,6,4,2) 0.51 99.67 OA(256,6,16,2) 0.17 99.90

Given the run and factor sizes, different initial designs OA(n, k, s, t) are characterized by the level sizes (s) and strengths
t). Note that an OA of strength t satisfies A1 = · · · = At = 0. Since only the A2 value matters in Theorem 2, any strength
⩾ 2 does not make a difference. Next, we study the influence of s on the average uniform projection properties of the
enerated LHDs in the LE procedure. By Theorem 2 and the properties of OAs, we can prove the following corollary.

orollary 3. For all possible LHDs D′(n, k) generated from an OA(n, k, s, t) via LE (m = n/s), we have

φE
(
D′
)

=
(34n2

− 4n − 5)s2 + 8(n − 1)n2s − 4n3
+ 4n2

144n4s2
+

1 + (−1)n

64n4 . (5)

Taking the derivative of φE
(
D′
)
in (5) with respect to s, we have

d
(
φE
(
D′
))

ds
=

(n − 1)
(
−s2 + s

)
18n2s4

< 0 for s ⩾ 2.

Thus, φE
(
D′
)
decreases monotonically with respect to s. Given n and k, we should choose an OA with a large s so that

he LHDs generated via LE will have better average uniform projection properties.

xample 5. Consider initial lower-level OAs D1 and higher-level OAs D2, from which we randomly generate 105 LHDs via
E. We show their average φ-values and φ-efficiencies in Table 10. It is seen that higher-level OAs D2 will lead to better
enerated designs compared to lower-level OAs D1 in terms of the average uniform projection properties.

. Construction methods and numerical results

.1. Construction guidelines

Based on the theoretical results in Section 3, we propose four construction methods for UPDs: (1) level permutation
LP), (2) level expansion (LE), (3) both level permutation and expansion (BLPE) and (4) step-by-step level permutation
nd expansion (SLPE). In this part, we first discuss how to choose the most appropriate method according to the required
esign sizes, and then illustrate the three-step procedure of the SLPE method.
Case 1: LP should be used when the required UPDs have prime numbers of levels s (s > 2). In such cases, if OAs are

vailable, we can use them as UPDs according to Lemma 1. When OAs are not available, according to Theorem 1, we
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can select near OAs (Lu et al., 2006; Wang and Wu, 1992; Xu, 2002) or some random designs with small A2 values as
nitial designs, and then perform LP to improve their uniform projection properties. Such initial designs will lead to the
‘average-best’’ search space having (s!)k generated designs. Note that LE cannot generate designs with prime numbers of
evels, and thus BLPE and SLPE are equivalent to LP in this case.

Case 2: LE should be used when practitioners require high-level UPDs that can be generated from some low-level
As. OAs are the desirable initial designs in LE, since they reach the lower bounds φLB2 (for φ values) and satisfy A2 = 0

by Lemma 1. According to Theorem 2 and Remarks 1 and 2, initial designs with small φ and A2 values are preferred. In
addition, by Corollary 3, an initial OA having as high the level s as possible should be chosen. Such an initial design will
lead to the ‘‘average-best’’ search space with ((n/s)!/(r!)m)sk generated designs.

Case 3: BLPE should be used when the required UPDs are small with non-prime numbers of levels and they will be
generated from non-OA initial designs. BLPE combines LP and LE, and will generally lead to better results compared to LE
only. However, its search space includes as many as (s!)k ((n/s)!/(r!)m)sk candidate designs, which can be very large for
onstructing large UPDs. By Theorem 3, we should select initial designs with small A2 values (e.g. near OAs), which will
ead to the ‘‘average-best’’ search space.

Case 4: SLPE should be used when the required UPDs have moderate or large sizes and non-prime numbers of levels.
t has the following three steps.

(1) Given the required run size n and factor size k, choose an initial design with as small A2 value as possible. Denote
it by D(n, sk).

(2) If D is not an OA, perform LP on D and identify the best generated design with the smallest φ value. Denote it by
Dp(n, sk).

(3) Starting from Dp(n, sk), perform LE to find the best generated UPD D′(n, (ms)k) with the smallest φ value.

SLPE combines LP and LE in a more efficient way compared to BLPE. The search space of SLPE includes (s!)k +

(n/s)!/(r!)m)sk designs, which is much smaller than that of BLPE. Thus, for moderate and large designs, SLPE will generally
ead to better results compared to LE and BLPE. The efficiency of SLPE’s first and second steps is proven by Theorem 1.
he efficiency of SLPE’s third step is proven by Theorem 2 and Remarks 1 and 2, where the average uniform projection
roperty of all generated designs φE

(
D′
)
is dominated by the initial design’s uniform projection property φ(D). Note that

when OAs are available to be the initial designs in the first step, the second step of SLPE will be skipped and it reduces
to the LE method.

In all of the above four cases, we aim to find the best search space of UPDs. Standard global optimization algorithms
can be used to perform the search (Dueck and Scheuer, 1990; Morris and Mitchell, 1995; Kennedy and Eberhart, 1995;
Holland, 1992). In this paper, we adopt the threshold accepting (TA) algorithm (Dueck and Scheuer, 1990; Xiao and Xu,
2018), which can be implemented with the R package ‘‘NMOF’’ (Schumann, 2021). We tailored this TA algorithm for
LP, LE, BLPE, SLPE as well as searching for near OAs. Its pseudo code (Algorithm 1) and additional details are reported
in Appendix A.

4.2. Numerical results

The design space for UPD grows exponentially fast as the design size increases, and a direct search over the entire
space can become time-consuming and inefficient. The key idea in using level permutation and/or level expansion is to
select efficient sub-spaces for searching. In this section, we compare our proposed methods to a direct search method via
numerical studies. Additionally, we also compare the proposed SLPE to the LE and BLPE methods to justify the guidelines
in Section 4.1.

In the current literature, researchers have adopted a direct search over the entire design space to identify UPDs (Sun
et al., 2019). Here, we compare the proposed SLPE to the direct search method for generating uniform projection LHDs
with various design sizes. In Table 11, we report the minimum, average and decrement rate of the generated LHDs’ φ
values. Here, the SLPE method starts from OAs or near OAs (marked with asterisks) and runs in less than five minutes for
all cases. For the direct search method, we evaluate the φ values of randomly drawn LHDs, which takes longer computing
time compared to the SLPE in every case. In Table 11, the decrement rate is a metric to evaluate the relative difference
between the φ values of two designs. Specifically, for two designs D1 and D2 (φ(D2) ⩽ φ(D1)), the decrement rate is
DR = (φ(D1) − φ(D2)) /φ(D1) × 100%. Clearly, 0 ≤ φDR ≤ 1, and large φDR means design D2 is much better than design

D1 in terms of the uniform projection criterion.
From Table 11, it is seen that the SLPE is superior compared to the direct search in terms of both the minimum and

average φ values in all cases. In addition, as the design size increases, the decrement rate of the φ values of the SLPE
relative to the direct search increases rapidly, thus the advantage of SLPE becomes more obvious.

Next, we compare the SLPE method to the BLPE method. As discussed in the guidelines, the search space of BLPE
also grows fast as the design size increases, and the SLPE chooses an efficient sub-space of it. In Table 12, we report the
minimum, average and decrement rate of the φ values for the generated LHDs from both methods. For the initial designs,
we consider two 37−2 designs with different GWLPs (the first two cases in Table 12) and several near OAs with small A2
values. For all cases, we let the BLPE run for longer time than the SLPE, which takes several seconds to several minutes
(varying by cases). From Table 12, it is seen that the SLPE outperforms the BLPE for moderate and large design sizes. Note
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Table 11
Comparison of uniform projection LHDs constructed by the direct search and SLPE methods.
Initial design Direct search SLPE Decrement rate

φmin φ̄ φmin φ̄ Min (%) Ave (%)

(15, 33)∗ 16.25 27.69 14.12 15.25 13.11 44.93
(21, 34)∗ 11.11 17.92 7.79 8.76 29.84 51.13
(25, 55) 9.12 14.43 5.80 6.08 36.43 57.83
(27, 33) 6.62 13.14 4.60 5.33 30.47 59.47
(30, 55)∗ 7.32 11.56 4.20 5.02 42.62 56.60
(40, 24) 4.39 8.24 2.37 3.33 45.93 59.52
(49, 73) 3.15 6.52 1.49 1.70 52.81 73.97
(50, 55) 3.73 6.40 1.58 1.86 57.49 70.96
(64, 84) 2.57 4.85 0.95 1.09 63.12 77.62
(64, 420) 4.28 4.84 1.62 1.80 62.24 62.92
(75, 55)∗ 2.52 4.06 0.80 1.00 68.24 75.38
(81, 98) 2.79 3.75 0.71 0.78 74.55 79.12
(128, 812) 1.84 2.30 0.38 0.43 79.52 81.12

Table 12
Comparison of the BLPE and the SLPE methods.
Initial design BLPE SLPE Decrement rate

φmin φ̄ φmin φ̄ Min (%) Ave (%)

(243, 37)1 2.79 3.59 2.34 2.46 16.13 31.48
(243, 37)2 5.02 6.49 4.49 4.61 10.56 28.97
(15, 33)∗ 16.03 22.16 14.12 15.25 11.94 31.19
(21, 34)∗ 10.14 13.47 7.79 8.76 23.12 34.97
(35, 77)∗ 5.39 6.73 3.53 3.71 34.53 44.90
(45, 95)∗ 3.48 5.06 2.13 2.26 38.78 55.23
(70, 107)∗ 2.10 2.75 1.05 1.15 50.10 58.29
(75, 155)∗ 1.98 3.30 0.92 0.98 53.39 70.39

Note: (243, 37)1 refers to the 37−2 design with (A1, A2, A3, A4) = (0, 2, 0, 4), and (243, 37)2 refers to the 37−2 design
with (0, 4, 0, 4).

Table 13
Comparisons of the LE and the SLPE methods.
Initial design LE SLPE Decrement rate

φmin φ̄ φmin φ̄ Min (%) Ave (%)

(243, 37)1 4.63 4.89 2.34 2.46 49.46 49.69
(243, 37)2 8.76 9.12 4.49 4.61 48.74 49.45
(30, 63)∗ 4.89 6.66 3.85 4.16 21.19 37.45
(35, 77)∗ 5.89 6.64 3.53 3.71 40.07 44.12
(45, 95)∗ 3.77 4.37 2.13 2.26 43.61 48.20
(70, 107)∗ 2.26 2.52 1.05 1.15 53.62 54.51
(75, 155)∗ 3.21 3.50 0.92 0.98 71.26 72.13

Note: (243, 37)1 refers to the 37−2 design with (A1, A2, A3, A4) = (0, 2, 0, 4), and (243, 37)2 refers to the 37−2 design
with (0, 4, 0, 4).

hat the BLPE method is superior to the direct search method. As the design size increases, the advantage of SLPE becomes
ore obvious since the decrement rate increases.
Finally, we compare the SLPE method to the LE method. As illustrated in Section 4.1, the LE is the third step of the SLPE.
hen OAs are available as the initial designs, they are essentially the same, since the first two steps of the SLPE should
e skipped. Here, we consider some cases where OAs are not available. In Table 13, we report the minimum, average and
ecrement rate of the φ values for the LHDs generated by the LE and the SLPE methods. In all cases, we let the LE run for
onger time than SLPE, which takes several seconds to several minutes (varying by cases). From Table 13, it is seen that
he SLPE is superior to the LE for all cases where OAs are not available as initial designs.

. Discussion

When only portions of the input factors are active in computer experiments, the low-dimensional projection uniformity
f designs is important. UPDs focus on the uniformity over two-dimensional projections and also have good space-filling
roperties over all projections. In this paper, we propose to construct UPDs with flexible sizes via (1) level permutation
LP), (2) level expansion (LE), (3) both level permutation and expansion (BLPE), and (4) step-by-step level permutation and
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expansion (SLPE). Theoretical results are developed to connect the uniform projection properties of the generated designs
to the properties of the initial designs in the proposed methods, and they will guide the search algorithm focusing on
efficient sub-spaces of solutions. Guidelines are provided for choosing appropriate construction methods according to the
required design sizes, and numerical results are presented to illustrate the efficiency of the proposed methods.

Although the SLPE can effectively generate uniform projection designs with flexible sizes, its LE step may be further
mproved when starting from OAs (A2 = 0). We find that the optimal UPD is often a mirror-symmetric design (Tang and
Xu, 2014). Thus, certain structural level expansion may lead to OA-based LHDs with good uniform projection properties.
This can be an interesting topic for future research. Moreover, Sun et al. (2019) established a link between the uniform
projection criterion and the L1-distance of a design, and Wang et al. (2020) established the relationship between the
orthogonality criterion and the L2-distance of a design. Their corresponding formulations are very similar, but the ranges
of variation of the φ value and the orthogonality metric value are not the same (which depend on the design sizes). From
this consideration, we can propose a new criterion that can be used to evaluate designs’ uniform projection properties
and orthogonality in a more comprehensive way as a future research.

Acknowledgments

The research was supported by National Natural Science Foundation of China (11971098, 11471069) and the National
Key Research and Development Program of China (2020YFA0714102).

Appendix A. Technical details on ta optimization

The threshold accepting (TA) algorithm is a widely used global optimization algorithm (Dueck and Scheuer, 1990;
Xiao and Xu, 2018). To avoid falling into a local optimal solution, the TA algorithm will accept a new solution that is not
much worse than the old one. We briefly describe its work-flow for identifying optimal designs here. Starting from an
initial solution (design), the current solution is changed through its neighbor in each iteration, and the new solution is
accepted if its objective function value improves or worsens less than a threshold. The threshold values are generated by
the empirical distributions of increments for the object function. As the iteration increases, the threshold values decrease
and the search tends to become more stable with less ‘‘jumps’’. The pseudo code for the TA algorithm is reported in the
following Algorithm 1.

Algorithm 1 A TA algorithm
Initialize tuning parameters nseq (number of iterations to compute the threshold sequence), nrounds (number of rounds)
and nsteps (number of steps).
Initialize a starting design D0; set Dopt = Dc = D0.
for j = 1 to nseq do

Generate a neighbor solution N(Dc) and let ∆j = |f (Dc) − f (N(Dc))|.
end for
Compute the empirical distribution of ∆j, j = 1, 2, . . . , nseq, denoted it as F .
for r = 1 to nrounds do

Generate thresholds τr = F−1 (0.5(1 − r/nrounds)).
for i = 1 to nsteps do

Generate a neighbor solution N(Dc) and let δ = f (N(Dc)) − f (Dc).
if δ < τr , then let Dc = N(Dc).
if f (Dc) < f (Dopt ), then let Dopt = Dc .

end for
end for
Return Dopt .

This TA algorithm will be used in both LP and LE as well as for searching near OAs. Note that the BLPE and the SLPE
are combinations of the LP and the LE methods. Specifically, for the LP procedure, the neighbor design N (Dc) in the TA
lgorithm is obtained by exchanging all elements of two random levels in a randomly chosen column of the current design
c . For the LE procedure, the neighbor design N (Dc) is obtained by exchanging the levels in two positions from a randomly
hosen column of Dc , where these two positions have different values in Dc but the same value in its corresponding
nitial design. The criterion φ in (1) is used as the objective function f here. When searching for near OAs, the neighbor
esign N (Dc) is obtained by exchanging two random positions in a randomly chosen column of the current design Dc .
he criterion A2 is used as the objective function f . In Algorithm 1, we typically set the tuning parameters nseq from 500
o 2000, nrounds from 10 to 50 and nsteps from 1000 to 5000 according to the practical needs.

ppendix B. Proofs

We first present a lemma that will be used in the subsequent proofs.
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Lemma 3. For a balanced (n, sk) design X = (xil)n×k with levels from {1, . . . , s}, suppose hi,j, di,j and d2(xi, xj) are Hamming
distance, L1- and L2-distance of two rows xi = (xi1, . . . , xik) and xj = (xj1, . . . , xjk) respectively. We have

n∑
i=1

n∑
j=1

hi,j =
kn2(s − 1)

s
, (B.1)

n∑
i=1

n∑
j=1

h2
i,j =

n2

s2
{2A2(D) + (s − 1)k[1 + (s − 1)k]} , (B.2)

n∑
i=1

n∑
j=1

di,j =
kn2

(
s2 − 1

)
3s

, (B.3)

n∑
i=1

d22 (xi, s0) =
kn
(
s2 − 1

)
12

, (B.4)

n∑
i=1

d44 (xi, s0) =
kn
(
s2 − 1

) (
3s2 − 7

)
240

, (B.5)

here s0 = (s + 1) /2, d2 (xi, s0) =

(∑k
l=1 |xil − s0|2

)1/2
and d4 (xi, s0) =

(∑k
l=1 |xil − s0|4

)1/4
. Eqs. (B.1) and (B.2) refer

o Xu (2003), which demonstrates the relationship between the generalized word-length pattern and Hamming distances. The
emaining equations in Lemma 3 can be proven via tedious calculations, so we omit the details.

roof of Theorem 1. We prove this result by using Theorem 3.1 of Tang and Xu (2013) and induction.
For any U-type design D with 1 or 2 columns, the result follows directly by Theorem 3.1 of Tang and Xu (2013). Suppose

hat the result holds for any U-type (n, sk−1) design with k − 1 ≥ 3. For any U-type (n, sk) design D, we partition D as
D{1},D{2,...,k}). Then,

φP
(
D′
)

=
1

(s!)k
∑

D∗
{1}∈P(D{1})

∑
D∗

{2,...,k}∈P(D{2,...,k})

φ
((
D∗

{1},D
∗

{2,...,k}

))

=
1

(s!)k
∑

D∗
{1}∈P(D{1})

∑
D∗

{2,...,k}∈P(D{2,...,k})

1(k
2

)
⎛⎝ ∑

i=2,...,k

CD
(
D∗

{1,i}

)
+

∑
|u|=2,u⊂{2,...,k}

CD
(
D∗

u

)⎞⎠
=

1(k
2

) ( k∑
i=2

(s + 1)2

36s4
A2
(
D{1,i}

)
+ (k − 1)φLB2

)
+

(k−1
2

)(k
2

) (
(s + 1)2

18(k − 1)(k − 2)s4
A2
(
D{2,...,k}

)
+ φLB2

)

=
(s + 1)2

18k(k − 1)s4

(
A2
(
D{2,...,k}

)
+

k∑
i=2

A2
(
D{1,i}

))
+ φLB2,

where the second to last equation follows by induction. By the definition of A2(D), we have A2(D) = A2(D{2,...,k}) +∑k
i=2 A2(D{1,i}), which completes the proof.

To prove Theorem 2, we first prove Lemma 2.

Proof of Lemma 2. For a balanced (n, sk) design D = (xil)n×k, combining (B.4) and (B.5), we can simplify g(D) using
Lemma 2 of Sun et al. (2019):

g(D) =

n∑
i=1

n∑
j=1

d2i,j −
2
n

n∑
i=1

⎛⎝ n∑
j=1

di,j

⎞⎠2

=

n∑
i=1

n∑
j=1

d2i,j −
4n
s2

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

+ C0,

here C0 = −kn2
(
s2 − 1

) (
(25k + 3)s2 − 25k − 7

)
/120s2. Thus, based on (1), we have

φ(D) =
1

4k(k − 1)n2s2

n∑
i=1

n∑
j=1

d2i,j −
1

k(k − 1)ns4

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

+ C2,

where C = C(k, s) −
(
s2 − 1

) (
(25k + 3)s2 − 25k − 7

)
/480(k − 1)s4 and C(k, s) is defined in (1).
2
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Proof of Theorem 2. Generate a series of
(
n, (ms)k

)
designs D′

= (x′

il)n×k from an initial
(
n, sk

)
design D = (xil)n×k via

evel expansion. First of all, we need to calculate the expectations of the first two terms in Eq. (4) by Lemma 2. Note that
he generated designs take ms levels, so the s in (4) should be replaced by ms.

For the expectation of the first term, we first prove the result below based on Theorem 1 of Xiao and Xu (2018). For
enerated designs D′, the second moment of their pairwise L1-distance d′

i,j, for i, j = 1, . . . , n and i ̸= j, has the following
elationship with the initial design D:

EE
(
d′

i,j

)2
= m2d2i,j + 2kmγ di,j − 2mγ hi,jdi,j + γ 2h2

i,j +
(
C2,1 − 2kγ 2) hi,j +

(
C2,0 + k2γ 2) ,

where γ = n
(
m2

− 1
)
/3m(n − s), C2,0 = kn

(
m2

− 1
) (

m2n + 2n − 3m2s
)
/18m2(n − s)2 and C2,1 =

(
m2

− 1
)[

2n2
(
m2

− 1
)
− 3m2s(n − s)

]
/18m2(n − s)2. Then, combining (B.1)–(B.3), we can obtain

EE

⎛⎝ n∑
i=1

n∑
j=1

d′2
i,j

⎞⎠ = m2
n∑

i=1

n∑
j=1

d2i,j −
2n
(
m2

− 1
)

3(n − s)

n∑
i=1

n∑
j=1

hi,jdi,j +
2n4

(
m2

− 1
)2

9m2s2(n − s)2
A2(D) + C2,2, (B.6)

here the constant C2,2 = k(k − 1)n3
(
m2

− 1
) (

s2 + n
(
m2

− 1
))

/9m2s2(n − s)2 + kn2
(
m2

− 1
) [

−(4kn − 3)s3

+2(2kn − 3)ns2 + (2k + 3n + 2)ns − 4kn2
]
/18s(n − s)2.

For the expectation of the second term, we first prove the below conclusion:

EE
(
x′

ip − s′0
)2

=

m∑
t=1

((
xip − 1

)
m + t − s′0

)2 P (x′

ip =
(
xip − 1

)
m + t

)
=

1
m

m∑
t=1

(
t +

((
xip − 1

)
m − s′0

))2
= m2 (xip − s0

)2
+

m2
− 1

12
, (B.7)

here s′0 = (ms + 1)/2. Since x′

ip and x′

iq (p ̸= q) are determined independently by the pth and qth columns in the initial
esign D, combining (B.4) and (B.7), we obtain

EE

⎛⎝ n∑
i=1

∑
1⩽p<q⩽k

(
x′

ip − s′0
)2 (x′

iq − s′0
)2⎞⎠

=

n∑
i=1

∑
1⩽p<q⩽k

EE
(
x′

ip − s′0
)2 EE (x′

iq − s′0
)2

= m4
n∑

i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

+
nk(k − 1)

(
m2

− 1
) (

2m2s2 − m2
− 1

)
288

. (B.8)

Ultimately, because each level expansion occurs with equal probability in the sub-space E(D), combining (B.6), (B.8)
nd (4) we have

φE
(
D′
)

= EE
[
φ
(
D′
)]

= φ(D) −
m2

− 1
6k(k − 1)m2s2n(n − s)

n∑
i=1

n∑
j=1

hi,jdi,j

+
n2
(
m2

− 1
)2

18k(k − 1)m4s4(n − s)2
A2(D) + C1,

where the constant

C1 =

(
m2

− 1
) [

−(4kn − 3)s3 + 2(2kn − 3)ns2 + (2k + 3n + 2)ns − 4kn2
]

72(k − 1)m2s3(n − s)2

+
n
(
m2

− 1
) (

s2 + n
(
m2

− 1
))

36m4s4(n − s)2
−

1 + (−1)s

64s4
−

(
m2

− 1
) (

2m2s2 − m2
− 1

)
288m4s4

−

(
m2

− 1
) (

2(11k − 9)m2s2 − 3(k − 1)m2
− 3k + 3

)
96(k − 1)m4s4

+
1 + (−1)ms

64m4s4
.
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Proof of Remark 1. For a balanced (n, sk) design D = (xil)n×k, to justify that the first term of φ(D) in (4) is greater than

the absolute value of the second term, we can prove the following inequation:

n∑
i=1

n∑
j=1

(
k∑

l=1

⏐⏐xil − xjl
⏐⏐)2

>
4n
s2

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

. (B.9)

On the one hand, using (B.3) and the Cauchy–Schwarz inequality twice on the left side of (B.9), we can obtain

n∑
i=1

n∑
j=1

(
k∑

l=1

⏐⏐xil − xjl
⏐⏐)2

⩾

n∑
i=1

⎛⎜⎝1
n

⎛⎝ n∑
j=1

k∑
l=1

⏐⏐xil − xjl
⏐⏐⎞⎠2

⎞⎟⎠
⩾

1
n2

⎛⎝ n∑
i=1

n∑
j=1

k∑
l=1

⏐⏐xil − xjl
⏐⏐⎞⎠2

=
k2n2

(
s2 − 1

)2
9s2

. (B.10)

On the other hand, using (B.5) and the Cauchy–Schwarz inequality once on the right side of (B.9), we can obtain

4n
s2

n∑
i=1

∑
1⩽p<q⩽k

(
xip − s0

)2 (xiq − s0
)2

⩽
4n
s2

∑
1⩽p<q⩽k

(
n∑

i=1

(
xip − s0

)4) 1
2
(

n∑
i=1

(
xiq − s0

)4) 1
2

=
n2k(k − 1)

(
s2 − 1

) (
3s2 − 7

)
120s2

. (B.11)

In addition, since k ≥ 2 and s ≥ 2, it is easy to verify that

k2n2
(
s2−1

)2
9s2

n2k(k−1)(s2−1)(3s2−7)
120s2

=
40
3

(
1 +

1
k − 1

)(
s2 − 1
3s2 − 7

)
⩾

40
9

> 1. (B.12)

Thus, combining (B.10)–(B.12), we can prove (B.9).

Proof of Remark 2. For a balanced (n, sk) design D, when all possible level expansions of D are considered, we find the

following:

(1) For the coefficient part, since n ≥ ms and m ≥ 2,

1
4k(k−1)n2s2

m2−1
6k(k−1)m2s2n(n−s)

=
3m2

2
(
m2 − 1

) (1 −
s
n

)
=

3
2

(
1 −

1
m + 1

)
⩾ 1. (B.13)

For the body part, since (di,j − hi,j) ⩾ 0, we can consider (di,j − hi,j) to be the L1-distance between the ith row and the
th row of a new design. We define

(
di,j − hi,j

)
=
∑k

l=1 f1
(
xil, xjl

)
, where f1

(
xil, xjl

)
is equal to

⏐⏐xil − xjl − 1
⏐⏐ if xil ̸= xjl

and 0 otherwise. Furthermore, we define the L2-distance between the ith row and the jth row of the new design as√∑k f
(
x , x

)
, where f

(
x , x

)
is equal to

(
x − x − 1

)2 if x ̸= x and 0 otherwise. By the norm inequality and
l=1 2 il jl 2 il jl il jl il jl
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several simple algebraic steps, we have

n∑
i=1

n∑
j=1

(
di,j − hi,j

)2
=

n∑
i=1

n∑
j=1

(
k∑

l=1

f1
(
xil, xjl

))2

⩾

n∑
i=1

n∑
j=1

k∑
l=1

f2
(
xil, xjl

)
=

kn2(s − 2)(s − 1)2

6s
. (B.14)

Since hi,j ⩽ k, combining (B.3) and (B.14) yields∑n
i=1
∑n

j=1 d
2
i,j∑n

i=1
∑n

j=1 hi,jdi,j
= 1 +

∑n
i=1
∑n

j=1

(
di,j − hi,j

)
di,j∑n

i=1
∑n

j=1 hi,jdi,j
⩾ 1 +

∑n
i=1
∑n

j=1

(
di,j − hi,j

)2∑n
i=1
∑n

j=1 hi,jdi,j
⩾ 1 +

(s − 2)(s − 1)
2k(s + 1)

. (B.15)

Therefore, combining (B.13) and (B.15), we obtain

T1
T2

=

1
4k(k−1)n2s2

∑n
i=1
∑n

j=1 d
2
i,j

m2−1
6k(k−1)m2s2n(n−s)

∑n
i=1
∑n

j=1 hi,jdi,j
⩾ 1 +

(s − 2)(s − 1)
2k(s + 1)

.

(2) If the ratio of the second term to the third term in Eq. (3) is greater than or equal to 1, it is easy to obtain

A2(D) ⩽
3m2s2(n − s)
n3(m2 − 1)

n∑
i=1

n∑
j=1

hi,jdi,j.

For the lower bound of (3m2s2(n− s))(n3(m2
− 1))−1∑n

i=1
∑n

j=1 hi,jdi,j, since n ≥ ms, m ≥ 2, s ≥ 2 and hi,j ⩾ 1, combining
(B.3), we obtain

3m2s2(n − s)
n3
(
m2 − 1

) n∑
i=1

n∑
j=1

hi,jdi,j ⩾
km2s

(
s2 − 1

)
m2 − 1

(
1 −

s
n

)
⩾

kms
(
s2 − 1

)
m + 1

⩾ 4k.

Proof of Corollary 2. For a design D(n, 2k), its L1-distances equal Hamming distances. (1) By Theorem 2, Corollary 1 and
(B.2), we obtain

φE
(
D′
)

=
((2m2

+ 1)n − 6m2)2

288k(k − 1)m4(n − 2)2
A2(D) + C3,

here

C3 =
(k + 1)

((
m2

+ 2
)
n − 6m2

)
192(k − 1)m2(n − 2)

+
n
(
m2

− 1
) ((

m2
− 1

)
n + 4

)
576m4(n − 2)2

−

(
4m2

− 1
) (

(20k + 1)m2
− 5k − 1

)
1440(k − 1)m4

+

(
m2

− 1
) (

(6k + 3)n2
− (14k + 10)n + 12

)
288(k − 1)m2(n − 2)2

+
1

512m4 +
64(5k − 2)m4

+ 120(3k − 5)m2
+ 15k + 33

11520(k − 1)m4 .

2) Specifically, when the generated design D′ is an LHD(n, k) (m = n/s), we can simplify this further:

φE
(
D′
)

=
(n − 1)2

72k(k − 1)n2 A2(D) + C4,

here C4 = (6n3
+ 62n2

− 8n − 1)/(288n4).

roof of Theorem 3. Let σ represent a level permutation procedure, π represent a level expansion procedure, and Θ

epresent the set of all designs generated via all possible level permutations and expansions. Let Eσ express the expectation
f the designs generated via all possible level permutations, Eπ express the expectation of the designs generated via all
ossible level expansions and EΘ express the expectation of the designs generated via all possible level permutations and
xpansions. Using the properties of conditional expectations, we obtain

EΘ

[
φ(D′)

]
= Eσ

[
Eπ

(
φ(D′)|σ

)]
. (B.16)

Given a level permutation procedure σ , let dσ
i,j represent the L1-distance of a design generated via σ . The level

ermutation does not change the pairwise Hamming distances or A2 value of a design. Using Theorem 2, we obtain

Eπ

[
φ
(
D′
)
|σ
]

= (φ(D))σ −
m2

− 1
6k(k − 1)m2s2n(n − s)

n∑
i=1

n∑
j=1

hi,jdσ
i,j +

n2
(
m2

− 1
)2

18k(k − 1)m4s4(n − s)2
A2(D) + C1

=
1

4k(k − 1)n2s2

n∑ n∑(
dσ
i,j

)2
+

n2
(
m2

− 1
)2

18k(k − 1)m4s4(n − s)2
A2(D) + C3,1
i=1 i=1

223



Y. Zhou, Q. Xiao and F. Sun Journal of Statistical Planning and Inference 222 (2023) 209–225

w

(

−
1

k(k − 1)ns4

n∑
i=1

∑
1⩽p<q⩽k

(
xσ
ip − s0

)2 (xσ
iq − s0

)2
−

m2
− 1

6k(k − 1)m2s2n(n − s)

n∑
i=1

n∑
j=1

hi,jdσ
i,j, (B.17)

here C3,1 = C1 + C(k, s) −
(
s2 − 1

) (
(25k + 3)s2 − 25k − 7

)
/480(k − 1)s4.

Xiao and Xu (2018) pointed out that the expectation and variance of dσ
i,j have the following relationships: Eσ

(
dσ
i,j

)
=

s + 1)hi,j/3 and Varσ
(
dσ
i,j

)
= (s + 1)(s − 2)hi,j/18. Thus, we can obtain the second moment of dσ

i,j:

Eσ

(
dσ
i,j

)2
=

(s + 1)(s − 2)
18

hi,j +
(s + 1)2

9
h2
i,j. (B.18)

In addition, we have

Eσ

(
xσ
ip − s0

)2
=

s∑
t=1

(t − s0)2 P
(
xσ
ip = t

)
=

1
s

s∑
t=1

(t − s0)2 =
s2 − 1
12

. (B.19)

Since the pth and qth columns of the generated design are determined independently in the level permutation procedure,
combining Theorem 2, (B.1), (B.2) and (B.16)–(B.19), after performing some simple algebra, we obtain

φΘ

(
D′
)

= EΘ

[
φ
(
D′
)]

=

(
m2s2 − (n − 1)m2s − n

)2
18k(k − 1)m4s4(n − s)2

A2(D) + C5,

where the constant

C5 = C1 + C(k, s) −

(
s2 − 1

) (
(25k + 3)s2 − 25k − 7

)
480(k − 1)s4

−

(
s2 − 1

)2
288s4

−
(s2 − 1)

[
(2k + 1)m2s3 − (2k + 1)nm2s2 − 4kns − 2(k − 1)n(m2

− 2) + 2(2kn − k + 1)m2s
]

72(k − 1)m2s4(n − s)
,

and C1 is defined in (3).

Appendix C. Codes

For the codes used for the SLPE, please see https://github.com/Yishan130426/TA_UPD.

References

Dueck, G., Scheuer, T., 1990. Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput.
Phys. 90, 161–175.

Fang, K.T., Li, R., Sudjianto, A., 2006. Design and Modeling for Computer Experiments. Chapman & Hall/CRC, New York.
Garud, S.S., Karimi, I.A., Kraft, M., 2017. Design of computer experiments: A review. Comput. Chem. Eng. 106, 71–95.
Gramacy, R.B., 2020. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Chapman & Hall/CRC, New York.
Hedayat, A.S., Sloane, N.J., Stufken, J., 1999. Orthogonal Arrays: Theory and Applications. Springer, New York.
Hickernell, F.J., 1998. A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299–322.
Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. MIT Press, Cambridge.
Jiang, B.C., Ai, M.Y., 2017. Construction of uniform U-designs. J. Statist. Plan. Inference 181, 1–10.
Johnson, M.E., Moore, L.M., Ylvisaker, D., 1990. Minimax and maximin distance designs. J. Statist. Plan. Inference 26, 131–148.
Joseph, V.R., 2016. Space-filling designs for computer experiments: A review. Qual. Eng. 28, 28–35.
Joseph, V.R., Gul, E., Ba, S., 2015. Maximum projection designs for computer experiments. Biometrika 102, 371–380.
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4. IEEE,

pp. 1942–1948.
Kleijnen, J.P., 2017. Design and analysis of simulation experiments: Tutorial. In: Tolk, A., Fowler, J., Shao, G., Yucesan, E. (Eds.), Advances in Modeling

and Simulation. Springer, New York, pp. 135–158.
Leary, S., Bhaskar, A., Keane, A., 2003. Optimal orthogonal-array-based latin hypercubes. J. Appl. Stat. 30, 585–598.
Li, W.L., Liu, M.Q., Tang, B.X., 2020. A method of constructing maximin distance designs. Biometrika http://dx.doi.org/10.1093/biomet/asaa089.
Lin, C.D., Tang, B., 2015. Latin hypercubes and space-filling designs. In: Dean, A., Morris, M., Stufken, J., Bingham, D. (Eds.), Handbook of Design and

Analysis of Experiments. Chapman & Hall/CRC, New York, pp. 593–625.
Lu, X., Li, W., Xie, M., 2006. A class of nearly orthogonal arrays. J. Qual. Technol. 38, 148–161.
Lukemire, J., Xiao, Q., Mandal, A., Wong, W.K., 2021. Statistical analysis of complex computer models in astronomy. arXiv preprint arXiv:2102.07179.
McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from

a computer code. Technometrics 21, 239–245.
Moon, H., Dean, A.M., Santner, T.J., 2012. Two-stage sensitivity-based group screening in computer experiments. Technometrics 54, 376–387.
Morris, M., Mitchell, T.J., 1995. Exploratory designs for computational experiments. J. Statist. Plan. Inference 43, 381–402.
Santner, T.J., Williams, B.J., Notz, W.I., 2003. The Design and Analysis of Computer Experiments. Springer, New York.
Schumann, E., 2021. Numerical methods and optimization in finance (nmof) manual. package version 2.4-1. http://enricoschumann.net/NMOF/.
Sun, F.S., Tang, B.X., 2017a. A general rotation method for orthogonal latin hypercubes. Biometrika 104, 465–472.
Sun, F.S., Tang, B.X., 2017b. A method of constructing space-filling orthogonal designs. J. Amer. Statist. Assoc. 112, 683–689.
Sun, F.S., Wang, Y.P., Xu, H.Q., 2019. Uniform projection designs. Ann. Statist. 47, 641–661.
Tang, B.X., 1993. Orthogonal array-based latin hypercubes. J. Amer. Statist. Assoc. 88, 1392–1397.
224

https://github.com/Yishan130426/TA_UPD
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb1
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb1
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb1
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb2
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb3
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb4
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb5
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb6
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb7
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb7
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb7
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb8
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb9
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb10
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb11
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb12
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb12
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb12
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb13
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb13
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb13
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb14
http://dx.doi.org/10.1093/biomet/asaa089
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb16
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb16
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb16
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb17
http://arxiv.org/abs/2102.07179
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb19
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb19
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb19
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb20
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb21
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb22
http://enricoschumann.net/NMOF/
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb24
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb25
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb26
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb27


Y. Zhou, Q. Xiao and F. Sun Journal of Statistical Planning and Inference 222 (2023) 209–225

W
W

W

X
X
X
X
X
X
Z
Z

Tang, Y., Xu, H.Q., 2013. An effective construction method for multi-level uniform designs. J. Statist. Plan. Inference 143, 1583–1589.
Tang, Y., Xu, H.Q., 2014. Permuting regular fractional factorial designs for screening quantitative factors. Biometrika 101, 333–350.
Tang, Y., Xu, H.Q., Lin, D.K.J., 2012. Uniform fractional factorial designs. Ann. Statist. 40, 891–907.
Wang, Y.P., Sun, F.S., Xu, H.Q., 2020. On design orthogonality, maximin distance and projection uniformity for computer experiments. J. Amer. Statist.

Assoc. http://dx.doi.org/10.1080/01621459.2020.1782221.
ang, J.C., Wu, C.F.J., 1992. Nearly orthogonal arrays with mixed levels and small runs. Technometrics 34, 409–422.
ang, L., Xiao, Q., Xu, H.Q., 2018. Optimal maximin L1-distance latin hypercube designs based on good lattice point designs. Ann. Statist. 46,
3741–3766.

oods, D.C., Lewis, S.M., 2016. Design of experiments for screening. In: Ghanem, R., Higdon, D., Owhadi, H. (Eds.), Handbook of Uncertainty
Quantification. Springer, New York, pp. 1143–1185.

iao, Q., Wang, L., Xu, H.Q., 2019. Application of kriging models for a drug combination experiment on lung cancer. Stat. Med. 38, 236–246.
iao, Q., Xu, H.Q., 2017. Construction of maximin distance latin squares and related latin hypercube designs. Biometrika 104, 455–464.
iao, Q., Xu, H.Q., 2018. Construction of maximin distance designs via level permutation and expansion. Statist. Sinica 28, 1395–1414.
u, H.Q., 2002. An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs. Technometrics 44, 356–368.
u, H.Q., 2003. Minimum moment aberration for nonregular designs and supersaturated designs. Statist. Sinica 13, 691–708.
u, H.Q., Wu, C.F.J., 2001. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29, 1066–1077.
hou, Y.D., Fang, K.T., Ning, J., 2013. Mixture discrepancy for quasi-random point sets. J. Complexity 29, 283–301.
hou, Y.D., Xu, H.Q., 2014. Space-filling fractional factorial designs. J. Amer. Statist. Assoc. 109, 1134–1144.
225

http://refhub.elsevier.com/S0378-3758(22)00063-5/sb28
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb29
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb30
http://dx.doi.org/10.1080/01621459.2020.1782221
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb32
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb33
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb33
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb33
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb34
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb34
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb34
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb35
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb36
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb37
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb38
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb39
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb40
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb41
http://refhub.elsevier.com/S0378-3758(22)00063-5/sb42

	Construction of uniform projection designs via level permutation and expansion
	Introduction
	Notation and preliminaries
	Theoretical results
	Designs generated via LP
	Designs generated via LE
	Designs generated via BLPE
	Choices of OAs as initial designs

	Construction methods and numerical results
	Construction guidelines
	Numerical results

	Discussion
	Acknowledgments
	Appendix A. Technical details on TA optimization
	Appendix B. Proofs
	Appendix C. Codes
	References


